# Index
# Workspace Setup
Once you're done with the framing phase of the project, as explored in the previous guides of this section, you can start setting up your workspace in order to proceed to the next steps of the data science process, where you will explore the data, train Machine Learning models on them, and deploy those models in order to make useful predictions.
There are two ways to set up your workspace: either in your local machine or in the cloud.
To set up a local workspace is a must-have skill for a data science practitioner, so we recommend you to try to go through a Local Setup at least once (unless you have a very old/weak computer).
Probably in the future, you'll need to train bigger models that require more memory, costly CPU operations on raw data, and GPU acceleration for the training phase. In the Cloud Computing section we give you an overview of the several options you can consider to overcome the limitations of your local machine.
# Local Setup
After you've installed Python (opens new window) on your machine, in the guide Installing Packages with Pip (opens new window) you understand how to use the default Package Installation manager (Pip) to download the modules that you will need. However, even if you feel that more control over the environment could be good, you should consider using Anaconda as a preferred package manager for Data Science.
# Anaconda
The recommended way to set up your local workspace is through the use of Anaconda (opens new window).
Conda is an open-source package management system and environment management system that runs on Windows, macOS, and Linux. Conda quickly installs, runs, and updates packages and their dependencies. Conda easily creates, saves, loads, and switches between environments on your local computer. It was created for Python programs, but it can package and distribute software for any language.
Use the following tutorial to setup Anaconda on your local machine:
How to Set Up Your Data Science Environment with Anaconda (opens new window)
Anaconda brings with it the most used Python modules when working with data, and you can install more by simply using the " conda install " command, or using pip.
# Cloud Computing
One day you will find that in order to train that model on 50 GB of images it takes too long for your computer to compute, so you start wondering if you should use Cloud Computing to host your calculations somewhere else!
Ever had a thought like "I should buy a more powerful pc"? Forget about it and use Cloud GPUs to train your model faster and cheaper!
Also get to know where you can deploy (opens new window) your model to serve millions of people.
Check out the free credits and Perks/offer (opens new window) section to get some free GPU hours.
Last updated : 20 April 2019
# | Cloud vendor | Website | Pricing | Free Trial / Free Credits |
---|---|---|---|---|
1 | Google Colaboratory | https://colab.research.google.com | FREE | FREE FOREVER* |
2 | Kaggle Kernels | https://www.kaggle.com | FREE | FREE FOREVER* |
3 | Tensorpad | https://www.tensorpad.com | 1080ti at $0.49/hour | 5 free GPU hours |
4 | FloydHub | https://www.floydhub.com | https://www.floydhub.com/pricing | free 2 GPU powerups in 14 days trial plan (opens new window) |
5 | Onepanel | https://www.onepanel.io | https://www.onepanel.io/pricing | - |
6 | Nimblebox | https://nimblebox.ai | https://nimblebox.ai/plans | free $5 worth of cloud credits |
7 | paperspace | https://www.paperspace.com | https://www.paperspace.com/pricing | $10 credits |
8 | Overture | https://www.overture.ai | - | free credits on signup |
9 | Dataiku | https://www.dataiku.com | - | Free Plans (opens new window) |
10 | Cloudalize | https://www.cloudalize.com | https://www.cloudalize.com/pricing/ | - |
11 | Deepcognition | https://deepcognition.ai | https://deepcognition.ai/products | Desktop version free (opens new window) to use |
12 | GPUeater | https://gpueater.com | https://gpueater.com/#pricing | - |
13 | Vast.ai | https://vast.ai | https://vast.ai/console/create/ | - |
14 | Clusterone | https://clusterone.com | https://clusterone.com/pricing | $25 Sign up credit |
15 | Snark | https://snark.ai | https://scale.snark.ai/pricing | - |
16 | Crestle | https://crestle.ai | https://crestle.ai/#pricing | 1 hour of free GPU usage on sign up fast.ai (opens new window) |
17 | Vector Dash(gaming) | https://vectordash.com | - | free 7 day plan |
18 | Spell | https://spell.run/developers | https://spell.run/pricing | $10 GPU credit on signup |
19 | Rapid Switch | https://www.rapidswitch.com | pricing (opens new window) | - |
20 | Salamander | https://salamander.ai | https://salamander.ai | - |
21 | Leadergpu | https://www.leadergpu.com | https://www.leadergpu.com | - |
22 | vscaler | https://www.vscaler.com | on request (opens new window) | - |
23 | AWS Sagemaker | https://aws.amazon.com/sagemaker/ | pricing (opens new window) | Free plans (opens new window) |
24 | Exoscale | https://www.exoscale.com/gpu/ | pricing (opens new window) | - |
25 | Cirrascale | http://www.cirrascale.com | Work station (opens new window) | - |
26 | Alibaba cloud | https://alibabacloud.com | pay as you go (opens new window) | $300 credits (opens new window) |
27 | IBM Cloud | https://www.ibm.com/cloud/gpu | pay as you go (opens new window) | $200 credits (opens new window) |
28 | Google Cloud Platform | https://cloud.google.com/gpu/ | https://cloud.google.com/pricing/ | $300 credits (opens new window) |
29 | Valohai | https://valohai.com | https://valohai.com/pricing/ | free trial avaliable |
30 | Nvidia cloud | https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/ | - | - |
31 | One stop System | https://www.onestopsystems.com | - | - |
32 | Azure | https://azure.microsoft.com/en-in/services/machine-learning-studio/ | pricing (opens new window) | $200 credits (opens new window) |
33 | Omnisci | https://www.omnisci.com | https://www.omnisci.com/cloud | 14 day free trial |
34 | Rendsolve | https://rendsolve.com | https://rendsolve.com/pricing | - |
35 | Golem | https://golem.network | - | - |
# Deploy your model as a Web app
Have an idea and want to serve to world 🌎 , create a Webapp and deploy it as a flask , Django etc
# | Vendor | Website | Pricing | Free Trial / Free Credits |
---|---|---|---|---|
1 | Render | https://render.com | https://render.com/pricing | - |
2 | Heroku | https://www.heroku.com | https://www.heroku.com/pricing | Free plan (opens new window) (model<500MB) |
3 | Digtal Ocean | https://www.digitalocean.com | pay as you go (opens new window) | free $100 credits with github student pack (opens new window) |
4 | Glitch | https://glitch.com | - | - |
5 | Zeit | https://zeit.co | https://zeit.co/pricing | Free plan available |
# Perks and offers
If you are a student or researcher you can get extra credts , contact the provider
- Paperspace provides $10 of free Gradient° credit fast.ai link (opens new window)
- Do you have a GPU lying around rent your machine to Earn money using Vast.ai (opens new window)*
- Test Drive Nvidia GPU link (opens new window)
- Google Cloud Research program - gives $5000+ credits link (opens new window)
- AWS Cloud Credits for Research -link (opens new window)
- Nvidia GPU Grant Program- link (opens new window)
- If you are a Startup then google has you covered wth Startup Program giving you credits from $1000 to $100000 - link (opens new window)
- Google giving cluster of 1000 TPUs to researcher In total, this cluster delivers a total of more than 180 petaflops of raw compute power! techcrunch link (opens new window) - application link (opens new window)
- Google cloud Education Grant - link (opens new window)
- Github Education pack - along with many offers has upto $110 credits for AWS - link (opens new window)
- Watch out on fast.ai Forums (opens new window) to get coupon code for free credits
- Valohai gives you an researcher license (opens new window) for students and researchers
- Want to use a Super Computer but don't have one, go for Golem - Golem (opens new window) is a decentralized marketplace for computing power. It enables CPUs and GPUs to connect in a peer-to-peer network, enabling both application owners and individual users to rent resources from other users machines, so turbo charge your next model training.
# * Notes
- Google colab and Kaggle kernels have limited session time
- Most of the gpu providers run on top of AWS , GCP etc so may have more or less same pricing as the latter
- Information given above is best to my searching ability , you may recheck with the provider for pricing and other info
- license (opens new window)
# Conclusions
You have been given a panoramic of options to set up your workspace, either on your local machine or in the cloud. Often, to start practicing and experimenting you don't need a powerful GPU machine, and you can try things locally.
Then, when you need to experiment with the training of several Machine Learning models and pick the best one, you can choose a cloud provider like the ones listed here to massively scale!